Journal of Information Systems and Informatics
Vol 7 No 3 (2025): September

Enhancing Coffee Leaf Rust Detection with DenseNet201Plus and Transfer Learning

Karia, Adrian Jackob (Unknown)
Ally, Juma S (Unknown)
Leonard, Stanley (Unknown)



Article Info

Publish Date
25 Sep 2025

Abstract

Coffee leaf rust (CLR) is a disease of coffee leaves caused by the fungus Hemileia Vastatrix, posing a major threat to global coffee production. Early and accurate detection is crucial for sustainable farming practices and disease management. This study proposes a novel deep learning approach that integrates DenseNet201Plus, an enhanced version of DenseNet201, with transfer learning to improve the accuracy and efficiency of CLR detection. DenseNet201Plus incorporates fine-tuned layers and optimized hyperparameters designed for plant disease classification, while transfer learning utilizes pre-trained weights from large-scale image datasets, enabling the model to adapt the characteristics of CLR images with limited training data. The model was evaluated on two datasets: the newly collected, high-quality Mbozi CLR dataset and the publicly available ImageNet CLR dataset, using accuracy, precision, recall, and F1-score. Results demonstrate that DenseNet201Plus achieved an accuracy of 99.0% on the Mbozi dataset, surpassing 97.78% obtained by the ImageNet Public dataset, with corresponding gains across all performance metrics. Results confirm that integration of DenseNet201Plus with transfer learning on the high-quality dataset significantly enhances CLR detection. The method outperformed several other baseline methods. The proposed approach offers a scalable, real-time detection solution for field deployment, supporting precision agriculture, enabling timely and targeted interventions.

Copyrights © 2025






Journal Info

Abbrev

isi

Publisher

Subject

Computer Science & IT

Description

Journal-ISI is a scientific article journal that is the result of ideas, great and original thoughts about the latest research and technological developments covering the fields of information systems, information technology, informatics engineering, and computer science, and industrial engineering ...