Techno Nusa Mandiri : Journal of Computing and Information Technology
Vol. 20 No. 2 (2025): Techno Nusa Mandiri : Journal of Computing and Information Technology Period o

OPTIMIZATION OF MACHINE LEARNING ALGORITHMS IN THE CLASSIFICATION OF VECTOR-BORNE DISEASES

Sukrul Ma’mun (Unknown)
Eni Heni Hermaliani (Unknown)



Article Info

Publish Date
25 Sep 2025

Abstract

Developing a predictive model is the objective of this study, focusing on vector-borne diseases using various machine learning methods, including Random Forest (RF), Logistic Regression (LR), k-nearest Neighbors (kNN), Tree (DT), and XGBoost. The main goal is to use oversampling techniques like SMOTE and Random Oversampling to correct the dataset's class imbalance. The dataset was obtained from Kaggle and literature references published in Frontiers in Ecology and Evolution (Endo and Amarasekare 2022), consisting of approximately 9,490 entries with environmental, demographic, and clinical attributes. Dengue Fever is one of the diseases that this study focuses on. Aedes aegypti mosquitoes spread it, and it is a significant health risk in tropical areas. The DT and XGBoost models had the highest accuracy, at 99.2%. Logistic Regression and Random Forest also did well, with 99.1% accuracy. KNN did well, too, but with a lower recall, at 99.0%. The ROC curve gave a complete picture of how well each model classified things. These findings indicate that when combined with proper data handling, machine learning models can significantly improve early detection of vector-borne diseases and support more accurate and timely decision-making in public health interventions.

Copyrights © 2025






Journal Info

Abbrev

techno

Publisher

Subject

Computer Science & IT

Description

Jurnal TECHNO Nusa Mandiri, merupakan Jurnal yang diterbitkan oleh Pusat Penelitian Pengabdian Masyarakat (PPPM) STMIK Nusa Mandiri Jakarta. Jurnal TECHNO Nusa Mandiri, berawal diperuntukan menampung paper-paper ilmiah yang dibuat oleh dosen-dosen program studi Teknik ...