This study analyzes public sentiment towards transportation services in Indonesia through social media using Naïve Bayes and Support Vector Machine (SVM) algorithms. Data was collected from Twitter using an API with transportation-related keywords over a three-month period. The analysis results indicate that 93.5% of the opinions are neutral, 3.5% are positive, and 3% are negative. The dominance of neutral sentiment suggests potential dataset imbalance or user hesitation in expressing strong opinions. SVM achieved a higher accuracy (100%) compared to Naïve Bayes (92%), which may be influenced by dataset limitations or the model's validation method. Data preprocessing involved several steps, including tokenization, stopword removal, stemming, lemmatization, and handling of missing data to ensure cleaner and more structured text input. These findings highlight the potential of sentiment analysis for transportation policy improvements, providing insights for policymakers and transport service providers. Future research should address data balancing and broader dataset usage to enhance the robustness of findings and support better decision-making in the transportation sector.
Copyrights © 2025