Anemia merupakan kondisi medis yang memerlukan diagnosis yang akurat untuk penanganan yang efektif. Penelitian ini mengeksplorasi penerapan teknik ensemble learning, khususnya stacking classifier, untuk klasifikasi jenis-jenis anemia. Teknik ini menggabungkan tiga model dasar: Random Forest, K-Nearest Neighbors (KNN), dan Gradient Boosting, dengan Logistic Regression sebagai estimator akhir. Data medis yang digunakan melibatkan berbagai fitur hematologi, dan preprocessing meliputi pembersihan, normalisasi, serta pembagian data. Evaluasi model dilakukan menggunakan cross-validation dengan 10 lipatan. Hasil penelitian menunjukkan bahwa stacking classifier mencapai akurasi keseluruhan 98%, dengan precision dan recall yang sangat baik di sebagian besar kelas. Kelas-kelas seperti Iron deficiency anemia, Leukemia, dan Other microcytic anemia menunjukkan precision 100%, sementara beberapa kelas dengan sampel kecil mengalami recall yang lebih rendah. Secara keseluruhan, model ini efektif dalam mengklasifikasikan jenis-jenis anemia dengan akurasi tinggi dan dapat diadaptasi untuk meningkatkan diagnosis medis lebih lanjut. Penelitian ini menyoroti potensi teknik ensemble dalam memperbaiki performa klasifikasi dan menyarankan eksplorasi lebih lanjut pada data dengan distribusi yang tidak merata
Copyrights © 2025