Malcom: Indonesian Journal of Machine Learning and Computer Science
Vol. 5 No. 3 (2025): MALCOM July 2025

Perbandingan Naïve Bayes dan Support Vector Machine Dalam Analisa Sentimen Tentang Penyitaan Aset Koruptor di Twitter: Comparison of Naïve Bayes and Support Vector Machine in Sentiment Analysis of Confiscation of Corrupt Assets on Twitter

sholekhah, Ananda (Unknown)
Muntahanah, Muntahanah (Unknown)



Article Info

Publish Date
31 Jul 2025

Abstract

Analisis sentimen merupakan salah satu pendekatan dalam memahami persepsi publik terhadap isu-isu sosial dan kebijakan pemerintah melalui data teks. Penelitian ini mengkaji opini masyarakat Indonesia terhadap pernyataan Presiden Prabowo Subianto mengenai penyitaan aset koruptor yang berbunyi “Apakah adil anaknya menderita?”. Data dikumpulkan dari Twitter sebanyak 1.561 tweet dalam rentang waktu 9 hingga 25 April 2025 dengan menggunakan kata kunci yang relevan. Proses analisis dilakukan melalui tahap prapemrosesan, pembobotan TF-IDF, dan klasifikasi menggunakan algoritma Naïve Bayes dan Support Vector Machine (SVM). Evaluasi performa model dilakukan menggunakan confusion matrix serta empat metrik evaluasi, yaitu akurasi, presisi, recall, dan F1-score. Hasil menunjukkan bahwa SVM unggul dengan akurasi 70,51% dan F1-score 0,69, sedangkan Naïve Bayes memperoleh akurasi 66,34% dan F1-score 0,66. Sentimen terbanyak berasal dari kelas positif, mengindikasikan mayoritas publik mendukung penyitaan aset koruptor meskipun berdampak pada keluarganya. Penelitian ini memperlihatkan efektivitas pendekatan machine learning dalam memetakan opini publik terhadap isu kebijakan kontroversial di media sosial.

Copyrights © 2025






Journal Info

Abbrev

malcom

Publisher

Subject

Computer Science & IT

Description

MALCOM: Indonesian Journal of Machine Learning and Computer Science is a scientific journal published by the Institut Riset dan Publikasi Indonesia (IRPI) in collaboration with several Universities throughout Riau and Indonesia. MALCOM will be published 2 (two) times a year, April and October, each ...