Bulletin of Electrical Engineering and Informatics
Vol 14, No 5: October 2025

Improved load frequency control with chess algorithm-driven optimization of 3DOF-PID controller

Ardhan, Kittipong (Unknown)
Chansom, Natpapha (Unknown)
Audomsi, Sitthisak (Unknown)
Sa-Ngiamvibool, Worawat (Unknown)
Obma, Jagraphon (Unknown)



Article Info

Publish Date
01 Oct 2025

Abstract

In contemporary hybrid power systems, persistent load fluctuations disrupt the delicate balance between electrical output and mechanical torque, thereby compromising frequency stability. Load frequency control (LFC) mechanisms are indispensable in maintaining this equilibrium, particularly in systems integrating renewable and thermal energy sources. This study introduces a three-degree-of-freedom proportional-integral-derivative (3DOF-PID) controller optimized via the novel chess optimization algorithm (COA) and evaluates its efficacy against the ant lion optimizer (ALO) and Harris Hawks optimization (HHO). Extensive MATLAB/Simulink simulations were conducted on a hydrothermal system, with performance assessed through objective functions—integral of absolute error (IAE) and integral of time-weighted absolute error (ITAE). The COA consistently yielded the lowest cumulative error values (IAE=0.1548 and ITAE=0.2965), demonstrating its superiority in steady-state performance. However, COA exhibited substantial dynamic deviations, including an overshoot of 387.79% and undershoot of 4513.8% in ∆ftie. Conversely, HHO offered a significantly enhanced transient response, achieving 0% undershoot in ∆ftie with minimal oscillatory behavior. ALO displayed moderate performance but struggled with higher undershoots and prolonged settling time. The findings underscore the criticality of algorithm selection in controller design. While COA excels in minimizing long-term errors, HHO is preferable for applications requiring heightened dynamic stability and responsiveness.

Copyrights © 2025






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...