Stunting merupakan salah satu masalah kesehatan serius yang memengaruhi tumbuh kembang anak, terutama pada 1.000 Hari Pertama Kehidupan. Kota Tegal termasuk wilayah dengan prevalensi stunting yang cukup tinggi, sehingga diperlukan metode prediksi yang akurat untuk mendukung intervensi gizi tepat sasaran. Penelitian ini menggunakan metode Naive Bayes Gaussian untuk mengklasifikasikan status stunting balita berdasarkan data antropometri. Permasalahan ketidakseimbangan kelas pada dataset diatasi dengan teknik oversampling Synthetic Minority Over-sampling Technique (SMOTE) guna meningkatkan kemampuan model dalam mengenali kelas minoritas. Hasil pengujian menunjukkan bahwa model sebelum penerapan SMOTE memiliki akurasi rata-rata 91,58%. Setelah penerapan SMOTE, akurasi validasi silang meningkat menjadi rata-rata 96,28% dengan presisi 94,03%, recall 91,58%, dan F1-score 92,12%. Peningkatan ini membuktikan bahwa kombinasi Naive Bayes Gaussian dan SMOTE efektif untuk prediksi status stunting. Model yang dihasilkan berpotensi diimplementasikan sebagai sistem pendukung keputusan dalam deteksi dini dan pencegahan stunting di wilayah rawan
Copyrights © 2025