Algoritme Jurnal Mahasiswa Teknik Informatika
Vol 5 No 3 (2025): Oktober 2025 || Algoritme Jurnal Mahasiswa Teknik Informatika

Analisis Sentimen Ulasan Mobile Legend Menggunakan Algoritma Naive Bayes, SVM, Logistic Regression

Alengka, Son Gohan (Unknown)
Putra, Jordy Lasmana (Unknown)
Setiyorini, Tyas (Unknown)



Article Info

Publish Date
10 Oct 2025

Abstract

The rapid growth of the mobile gaming industry in Indonesia, particularly Mobile Legends: Bang-Bang, has generated millions of user reviews on the Google Play Store, making manual analysis inefficient and prone to bias. This study compares three algorithms—Naive Bayes, Support Vector Machine (SVM), and Logistic Regression—for sentiment analysis of 52,651 reviews. Preprocessing includes text cleaning, stopword removal (Indonesian/English), Sastrawi stemming, and TF-IDF representation (min_df=3, max_df=0.9, n-gram 1–2). Binary labeling follows a rating-based approach: 1–2 stars (negative), 4–5 stars (positive), while 3-star reviews are excluded due to ambiguity. Evaluation using accuracy, precision, recall, F1-score, confusion matrix, and Cohen’s Kappa shows SVM and Logistic Regression achieving ≈90–91%, with SVM chosen as the default model for its balanced metrics and margin stability. The model can be deployed as an API service (Flask/FastAPI) for near real-time review monitoring (e.g., lag, AFK, matchmaking), enabling alert thresholds and improvement prioritization. Findings remain limited to Mobile Legends reviews on Google Play, requiring further validation across other applications.

Copyrights © 2025






Journal Info

Abbrev

algoritme

Publisher

Subject

Computer Science & IT

Description

Jurnal Algoritme menjadi sarana publikasi artikel hasil temuan Penelitian orisinal atau artikel analisis. Bahasa yang digunakan jurnal adalah bahasa Inggris atau bahasa Indonesia. Ruang lingkup tulisan harus relevan dengan disiplin ilmu seperti: - Machine Learning - Computer Vision, - Artificial ...