Stock price prediction is a critical topic in financial technology research, as accurate forecasts support better decision-making in volatile markets. Numerous studies have applied statistical and machine learning models; however, most focus on one-step-ahead predictions and lack evaluation of recursive strategies in multi-day horizons. This study investigates the application of Long Short-Term Memory (LSTM) with a recursive forecasting approach to enhance stock price prediction accuracy. The dataset was enriched with multiple technical indicators and processed through a systematic Knowledge Discovery in Databases (KDD) pipeline, including preprocessing, transformation, modelling, and evaluation. Experimental results show that the recursive LSTM model achieves superior performance compared to baseline machine learning methods, with high accuracy in short-term horizons and stable performance up to nine days ahead, although accuracy gradually declines due to error accumulation. This work highlights the importance of integrating recursive forecasting with technical indicators to improve predictive capability in emerging markets and provides a foundation for developing adaptive financial forecasting frameworks.
Copyrights © 2025