IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 14, No 5: October 2025

Multilabel classification sentiment analysis on Indonesian mobile app reviews

Riccosan, Riccosan (Unknown)
Saputra, Karen Etania (Unknown)



Article Info

Publish Date
01 Oct 2025

Abstract

Mobile applications continue to evolve to satisfy the users. For that, the developers need to understand user feedback for improvements. Indonesia, one of the countries with the most mobile app users, has many textual mobile app reviews that may be processed and analyzed. Understanding the value of mobile app reviews requires understanding the value of sentiments and emotions to create more appropriate features to satisfy the users. To acquire a more accurate analysis of user reviews, it is important to detect sentiments that are closely associated with human emotion values due to the nature of multilabeled data. This research classifies the sentiments and emotions in Indonesian textual mobile app reviews, which are multilabel and multiclass in the form of 3 sentiments, namely positive, negative, and neutral, paired with 6 emotions, namely anger, sad, fear, happy, love, and neutral. We employ the Transformers architecture model, which includes two monolingual (a generic English and an Indonesian) and a multilingual pre-trained models with the results: bidirectional encoder representations from transformers (BERT) base uncased (micro avg. F1-score=0.69, precision=0.68, recall=0.70, receiver operating characteristic-area under the curve (ROC-AUC)=0.78), IndoBERT base uncased as best result (micro avg. F1-score=0.77, precision=0.78, recall=0.76, ROC-AUC=0.85), and multilingual BERT (M-BERT) base uncased (micro avg. F1-score=0.72, precision=0.73, recall=0.71, ROC-AUC=0.82).

Copyrights © 2025






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...