IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 14, No 5: October 2025

Design and analysis of reinforcement learning models for automated penetration testing

Jaganathan, Suresh (Unknown)
Latha, Mrithula Kesavan (Unknown)
Dharanikota, Krithika (Unknown)



Article Info

Publish Date
01 Oct 2025

Abstract

Our paper proposes a framework to automate penetration testing by utilizing reinforcement learning (RL) capabilities. The framework aims to identify and prioritize vulnerable paths within a network by dynamically learning and adapting strategies for vulnerability assessment by acquiring the network data obtained from a comprehensive network scanner. The study evaluates three RL algorithms: deep Q-network (DQN), deep deterministic policy gradient (DDPG), and asynchronous episodic deep deterministic policy gradient (AE-DDPG) in order to compare their effectiveness for this task. DQN uses a learned model of the environment to make decisions and is hence called model-based RL, while DDPG and AE-DDPG learn directly from interactions with the network environment and are called model-free RL. By dynamically adapting its strategies, the framework can identify and focus on the most critical vulnerabilities within the network infrastructure. Our work is to check how well the RL technique picked security vulnerabilities. The identified vulnerable paths are tested using Metasploit, which also confirmed the accuracy of the RL approach's results. The tabulated findings show that RL promises to automate penetration testing tasks.

Copyrights © 2025






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...