IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 14, No 5: October 2025

Early goat disease detection using temperature models: k-nearest neighbor, decision tree, naive Bayes, and random forest

Putra, Fareza Ananda (Unknown)
Wella, Wella (Unknown)



Article Info

Publish Date
01 Oct 2025

Abstract

This study aims to aid livestock activities by enabling early detection of diseases in goats through body temperature measurement. Early detection is crucial to prevent disease spread and improve livestock welfare. Using the knowledge discovery in databases (KDD) methodology, the study involves collecting, processing, and analyzing goat body temperature data. Four algorithms—k-nearest neighbor (KNN), decision tree, naive Bayes, and random forest—were used to develop disease detection models. The decision tree algorithm was found to be the most accurate, achieving 100% accuracy. This demonstrates its effectiveness in detecting diseases based on body temperature. Implementing this model is expected to significantly benefit farmers by helping maintain the health and productivity of their livestock.

Copyrights © 2025






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...