Buletin Ilmiah Sarjana Teknik Elektro
Vol. 7 No. 3 (2025): September

Bayesian-Optimized MLP-LSTM-CNN for Multi-Year Day-Ahead Electric Load Forecasting

Tuan, Nguyen Anh (Unknown)
Nguyen , Trung Dung (Unknown)



Article Info

Publish Date
09 Oct 2025

Abstract

Accurate long-term electric load forecasting—multi-year, day-ahead peak-load prediction—is critical for planning, operations, and policy. While traditional statistical and shallow machine-learning methods often struggle with nonlinear and multi-scale temporal patterns, deep learning offers promising alternatives. This study conducts a systematic, controlled comparison of three architectures—Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM)—within a unified Bayesian hyperparameter optimization protocol using daily peak-load data from the New South Wales (NSW) electricity market, 2015–2021, with a 365-day look-back window. Under identical data splits, objective, and search procedures, CNN delivers the best accuracy across all metrics (MAE = 699, MSE = 791,838, RMSE = 890, MAPE = 7.53%), MLP performs slightly worse, and LSTM yields the most significant errors alongside the most extended runtime. These results indicate that, under consistent tuning and a one-year context window, CNN captures local variations more effectively than the recurrent alternative in this setting. The research contribution of this study is a fair, empirical benchmark of widely used deep models (MLP, CNN, LSTM) for multi-year, day-ahead peak-load forecasting under a single Bayesian optimization framework, offering practical guidance for model selection. Reproducibility is facilitated by fixed random seeds and comprehensive configuration/trace logging. Limitations include an intentionally univariate design (no exogenous variables), a focus on learned architectures rather than naïve baselines, and the absence of uncertainty quantification; future work will extend to multivariate inputs (e.g., weather and calendar effects), hybrid CNN–LSTM and Transformer-based models, and broader baseline and robustness evaluations.

Copyrights © 2025






Journal Info

Abbrev

biste

Publisher

Subject

Electrical & Electronics Engineering

Description

Buletin Ilmiah Sarjana Teknik Elektro (BISTE) adalah jurnal terbuka dan merupakan jurnal nasional yang dikelola oleh Program Studi Teknik Elektro, Fakultas Teknologi Industri, Universitas Ahmad Dahlan. BISTE merupakan Jurnal yang diperuntukkan untuk mahasiswa sarjana Teknik Elektro. Ruang lingkup ...