Buletin Ilmiah Sarjana Teknik Elektro
Vol. 7 No. 3 (2025): September

Accurate Crowd Counting Using an Enhanced LCDANet with Multi-Scale Attention Modules

Abeuov, Nurmukhammed (Unknown)
Absatov, Daniyar (Unknown)
Mutaliyev, Yelnur (Unknown)
Serek, Azamat (Unknown)



Article Info

Publish Date
16 Oct 2025

Abstract

Accurate crowd counting remains a challenging task due to occlusion, scale variation, and complex scene layouts. This study proposes ME-LCDANet, an enhanced deep learning framework built upon the LCDANet backbone, integrating multi-scale feature extraction via Micro Atrous Spatial Pyramid Pooling (MicroASPP) and attention refinement using CBAMLite modules. A preprocessing pipeline with Gaussian-based density maps, synchronized augmentations, and a dual-objective loss function combining density and count supervision supports effective training and generalization. Experimental evaluation on the ShanghaiTech Part B dataset demonstrates a Mean Absolute Error (MAE) of 11.50 (95% CI: 10.20–12.91) and a Root Mean Squared Error (RMSE) of 11.54 (95% CI: 10.26–12.99). Training dynamics indicate steadily declining loss and reduced validation MAE, while gradient norm analysis suggests reliable convergence. Comparative results show that, although CSRNet and SaNet achieve slightly lower MAE, ME-LCDANet attains a notably reduced RMSE, reflecting robustness against large prediction deviations. While the study focuses on a single benchmark dataset, the proposed architecture offers a promising approach for robust crowd counting in diverse scenarios.

Copyrights © 2025






Journal Info

Abbrev

biste

Publisher

Subject

Electrical & Electronics Engineering

Description

Buletin Ilmiah Sarjana Teknik Elektro (BISTE) adalah jurnal terbuka dan merupakan jurnal nasional yang dikelola oleh Program Studi Teknik Elektro, Fakultas Teknologi Industri, Universitas Ahmad Dahlan. BISTE merupakan Jurnal yang diperuntukkan untuk mahasiswa sarjana Teknik Elektro. Ruang lingkup ...