The rapid growth of investment applications has transformed trading accessibility, yet user dissatisfaction persists, particularly regarding transaction delays, technical issues, and inadequate customer support. This study addresses a research gap in sentiment analysis, specifically in the context of the Ajaib investment application, by employing a Support Vector Machine (SVM) model combined with lexicon-based labelling. The objective is to classify user-generated Google Play reviews into positive, negative, and neutral sentiments, providing actionable insights for service improvement. The research follows a structured methodology comprising data crawling, text pre-processing (cleaning, case folding, tokenization, stopword removal, and stemming), TF-IDF feature extraction, and supervised classification with SVM. Model validation utilises a 3×3 confusion matrix to calculate accuracy, precision, and recall, thereby ensuring a robust performance evaluation. Experimental results demonstrate that the SVM classifier achieves high accuracy in identifying sentiment polarity, highlighting its suitability for text-based sentiment analysis in the financial domain. The distinct contribution of this research is its implementation of SVM for sentiment classification for Ajaib, offering a replicable framework for leveraging user feedback to enhance digital investment platforms. These findings contribute to the development of automated sentiment analysis systems that support data-driven decision-making for improving customer satisfaction.
                        
                        
                        
                        
                            
                                Copyrights © 2025