Padi menjadi makanan pokok bagi hampir 80% untuk diseluruh Indonesia, yang penghidupannya sangat bergantung pada hasil panen. Sektor pertanian padi menghadapi tantangan berupa penyakit pada daun tanaman, dengan mayoritas petani masih menggunakan metode konvensional dalam deteksi penyakit, menyebabkan keterlambatan penanganan. Penelitian ini mengembangkan sistem deteksi dini penyakit tanaman padi menggunakan kecerdasan buatan dan computer vision dengan deep learning. Implementasi metode YOLOv10 yang efektif dengan menghilangkan penekanan Non-Maximum Suppression untuk mengurangi komputasi secara signifikan. Data penelitian yang dikumpulkan di Dinas Pertanian Kota Padang mencakup 1.446 citra dari tiga jenis penyakit: hawar daun bakteri, cendawan bercak, dan virus tungro. Pre-processing melalui augmentasi data, dataset diperbesar menjadi 10.122 citra. Pelatihan model selama 100 epoch menghasilkan tingkat kepercayaan untuk penyakit daun bakteri hawar (90%), cendawan bercak (91%), dan virus tungro (98%). Sistem mencapai tingkat kepercayaan mAP 93%, Skor F1 88%, dengan waktu komputasi 0,9 detik per citra. Sistem ini menjadi solusi efektif dan efisien bagi para ahli pertanian dan petani dalam menganalisis tingkat keparahan penyakit daun pada tanaman padi.
Copyrights © 2025