MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer
Vol. 24 No. 1 (2024)

Variation of Distributed Power Control Algorithm in Co-Tier Femtocell Network

Harahap, Fatur Rahman (Unknown)
Isnawati, Anggun Fitrian (Unknown)
Ni'amah, Khoirun (Unknown)



Article Info

Publish Date
06 Nov 2024

Abstract

The wireless communication network has seen rapid growth, especially with the widespread use of smartphones, but resources are increasingly limited, especially indoors. Femtocell, a spectrum-efficient small cellular network solution, faces challenges in distributed power control (DPC) when deployed with distributed users, impacting power levels, and causing interference in the main network. The aim of this research is optimizing user power consumption in co-tier femtocell networks by using the user power treatment. This study proposed the Distributed Power Control (DPC) variation methods such as Distributed Constrained Power Control (DCPC), Half Distributed Constrained Power Control (HDCPC), and Generalized Distributed Constrained Power Control (GDCPC) in co-tier femtocell network. The research examines scenarios where user power converges but exceeds the maximum threshold or remains semi-feasible, considering factors like number of users, distance, channel usage, maximum power values, non-negative power vectors, Signal-to-Interference-plus-Noise Ratio (SINR), and link gain matrix values. In Distributed Power Control (DPC), distance and channel utilization affect feasibility conditions: feasible, semi-feasible, and non-feasible. The result shows that Half Distributed Constrained Power Control (HDCPC) is more effective than Distributed Constrained Power Control (DCPC) in semi-feasible conditions due to its efficient power usage and similar Signal-to-Interference-plus-Noise Ratio (SINR). Half Distributed Constrained Power Control (HDCPC) is also easier to implement than Generalized Distributed Constrained Power Control (GDCPC) as it does not require user deactivation when exceeding the maximum power limit. Distributed Power Control (DPC) variations can shift the power and Signal-to-Interference-plus-Noise Ratio (SINR) conditions from non-convergence to convergence at or below the maximum power level. We concluded that the best performance of Distributed Power Control (DPC) is Half Distributed Constrained Power Control (HDCPC).

Copyrights © 2024






Journal Info

Abbrev

matrik

Publisher

Subject

Computer Science & IT

Description

MATRIK adalah salah satu Jurnal Ilmiah yang terdapat di Universitas Bumigora Mataram (eks STMIK Bumigora Mataram) yang dikelola dibawah Lembaga Penelitian dan Pengabadian kepada Masyarakat (LPPM). Jurnal ini bertujuan untuk memberikan wadah atau sarana publikasi bagi para dosen, peneliti dan ...