Skandal BBM oplosan yang mencuat pada awal 2025 memicu gelombang reaksi dari masyarakat yang disuarakan melalui platform X. Penelitian ini ditujukan untuk mengevaluasi sentimen publik terkait kasus tersebut dengan menggunakan algoritma Naïve Bayes sebagai metode analisis. Proses analisis dilakukan dengan teknik scraping terhadap 2.351 tweet yang relevan, dilanjutkan dengan preprocessing teks. Label sentimen ditentukan secara otomatis menggunakan metode VADER, sementara representasi fitur dilakukan dengan teknik TF-IDF untuk meningkatkan kualitas klasifikasi. Selanjutnya, data dibagi menjadi data pelatihan dan data pengujian dengan perbandingan 80:20, kemudian diklasifikasikan menggunakan algoritma Multinomial Naïve Bayes. Hasil klasifikasi menunjukkan bahwa algoritma mampu mengidentifikasi sentimen negatif dengan recall tertinggi sebesar 75%, meskipun akurasi keseluruhan hanya mencapai 57%. Temuan ini menunjukkan bahwa pendekatan ini cukup andal dalam menangkap opini kritis masyarakat, namun masih perlu pengembangan untuk mengenali sentimen positif dan netral secara akurat. Penelitian selanjutnya disarankan untuk membandingkan algoritma Naïve Bayes dengan model lain seperti SVM atau Random Forest guna meningkatkan akurasi klasifikasi.
Copyrights © 2025