Jurnal Teknologi Informasi dan Ilmu Komputer
Vol 12 No 5: Oktober 2025

Pengontrolan Lampu Lalu Lintas Menggunakan Teknologi Deteksi Kendaraan YOLOV4

Wahidin, Farhan Raihan (Unknown)
Witanti, Wina (Unknown)
Ramadhan, Edvin (Unknown)



Article Info

Publish Date
31 Oct 2025

Abstract

Deteksi kendaraan adalah aspek kunci dalam pengontrolan lalu lintas yang efisien. Kemacetan lalu lintas bisa terjadi salah satunya akibat pengaturan durasi lampu lalu lintas yang tidak disesuaikan dengan volume kendaraan pada saat itu. Penelitian ini bertujuan mengembangkan sistem pengontorlan lampu lalu lintas adaptif yang menyesuaikan durasi lampu berdasarkan volume kendaraan yang terdeteksi menggunakan YOLOv4, yang dapat mengatasi kekurangan pada sistem pengontrolan lalu lintas konvensional dan mengurangi kemacetan serta meningkatkan efisiensi lalu lintas. Tahapan penelitian dimulai dengan mengumpulkan data video lalu lintas dari CCTV (Closed Circuit Television) yang dipasang di berbagai lokasi strategis untuk mendapatkan gambaran lengkap tentang kondisi lalu lintas. Data tersebut kemudian dianalisis menggunakan algoritma YOLOv4 (You Only Look Once v4) untuk mendeteksi kendaraan secara real-time. YOLOv4 dipilih karena keunggulannya dalam efisiensi dan akurasi deteksi kendaraan secara real-time. Setelah data deteksi kendaraan terkumpul, data tersebut diintegrasikan dengan sistem lampu lalu lintas. Algoritma ini dirancang untuk mengintegrasikan data deteksi kendaraan secara real-time dan menyesuaikan durasi lampu lalu lintas berdasarkan jumlah kendaraan. Selanjutnya simulasi sistem menggunakan library pygame dilakukan untuk mengevaluasi kinerja algoritma di berbagai kondisi lalu lintas. Hasil penelitian menunjukkan bahwa penggunaan YOLOv4 dalam sistem pengontrolan lampu lalu lintas adaptif secara signifikan mengurangi kemacetan. Model YOLOv4 menunjukkan akurasi rata-rata tertinggi sebesar 78% dalam deteksi kendaraan di jalan kedua dengan kualitas video yang cukup baik. Penggunaan YOLOv4 dalam pengontrolan lampu lalu lintas menunjukkan peningkatan efisiensi dan responsivitas terhadap tingkat kepadatan lalu lintas sedang, dengan pengurangan durasi lampu hijau berkisar antara 53% hingga 86%.   Abstract Vehicle detection is a key aspect of efficient traffic control. Traffic congestion can occur, in part, due to traffic light duration settings that are not adjusted according to the volume of vehicles at a given time. This study develops an adaptive traffic light control system that adjusts the duration of the lights based on the detected vehicle volume, aiming to address the shortcomings of conventional traffic control systems and reduce congestion while improving traffic efficiency.The research began with collecting traffic video data from CCTV (Closed Circuit Television) installed at various strategic locations to get a comprehensive overview of traffic conditions. The data was then analyzed using the YOLOv4 (You Only Look Once v4) algorithm for real-time vehicle detection. YOLOv4 was chosen for its advantages in efficiency and accuracy in real-time vehicle detection. Once the vehicle detection data was collected, it was integrated with the traffic light system. The algorithm was designed to integrate real-time vehicle detection data and adjust the traffic light duration based on the number of vehicles. A simulation of the system was then conducted using the Pygame library to evaluate the algorithm's performance under various traffic conditions. The study results showed that the use of YOLOv4 in adaptive traffic light control systems significantly reduced congestion. The YOLOv4 model demonstrated the highest average accuracy of 78.93% in vehicle detection on the second road with fairly good video quality. The use of YOLOv4 in traffic light control showed increased efficiency and responsiveness to moderate traffic density, with a reduction in green light duration ranging from 53% to 86%.

Copyrights © 2025






Journal Info

Abbrev

JTIIK

Publisher

Subject

Computer Science & IT Engineering

Description

Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) merupakan jurnal nasional yang diterbitkan oleh Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya (UB), Malang sejak tahun 2014. JTIIK memuat artikel hasil-hasil penelitian di bidang Teknologi Informasi dan Ilmu Komputer. JTIIK berkomitmen ...