Journal of System and Computer Engineering
Vol 6 No 4 (2025): JSCE: October 2025

Enhancing Human Activity Recognition with Attention-Based Stacked Sparse Autoencoders

Batau, Radus (Unknown)
Sari, Sri Kurniyan (Unknown)
Aziz, Firman (Unknown)
Jeffry, Jeffry (Unknown)



Article Info

Publish Date
30 Oct 2025

Abstract

This study presents the development of an intelligent system for the classification of respiratory diseases using lung sound visualizations and deep learning. A hybrid Convolutional Neural Network and Bidirectional Long Short-Term Memory (CNN–BiLSTM) model was designed to classify four conditions: asthma, bronchitis, tuberculosis, and normal (healthy). Lung sound recordings were converted into time-frequency representations (e.g., mel-spectrograms), enabling spatial-temporal feature extraction. The system achieved an overall classification accuracy of 99.5%, with F1-scores above 0.93 for all classes. The confusion matrix revealed minimal misclassifications, primarily between asthma and bronchitis. These results suggest that the proposed model can effectively support real-time, non-invasive respiratory screening, particularly in telemedicine environments. Future work includes clinical validation, integration of patient metadata, and adoption of transformer-based models to further enhance diagnostic performance.

Copyrights © 2025






Journal Info

Abbrev

JSCE

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Programming Languages Algorithms and Theory Computer Architecture and Systems Artificial Intelligence Computer Vision Machine Learning Systems Analysis Data Communications Cloud Computing Object Oriented Systems Analysis and Design Computer and Network Security Data ...