Advance Sustainable Science, Engineering and Technology (ASSET)
Vol 6, No 1 (2024): November-January

Zonation Method for Efficient Training of Collaborative Multi-Agent Reinforcement Learning in Double Snake Game

Hadiyanto, Marvin Yonathan (Unknown)
Harsono, Budi (Unknown)
Karnadi, Indra (Unknown)



Article Info

Publish Date
21 Dec 2023

Abstract

This paper proposes a zonation method for training the two reinforcement learning agents. We demonstrate the method's effectiveness in the double snake game. The game consists of two snakes operating in a fully cooperative setting to maximize the score. The problem in this game can be related to real-world problems, namely, coordination in autonomous driving cars and the operation of collaborative mobile robots in warehouse applications. Here, we use a deep Q-network algorithm to train the two agents to play the double snake game collaboratively through a decentralized approach, where distinct state and reward functions are assigned to each agent. To improve training efficiency, we utilize the snake sensory data of the surrounding objects as the input state to reduce the neural network complexity. The obtained result show that the proposed approaches can be used to train collaborative multi-agent efficiently, especially in the limited computing resources and training time environment

Copyrights © 2024






Journal Info

Abbrev

asset

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Control & Systems Engineering Electrical & Electronics Engineering Energy Materials Science & Nanotechnology

Description

This journal aims to provide a platform for scientists and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of science, engineering, and ...