Sinkron : Jurnal dan Penelitian Teknik Informatika
Vol. 9 No. 4 (2025): Articles Research October 2025

Integration Of Pca And K-Means Clustering For Staple Food Segmentation In Support Of National Food Policy

Sipayung, Sardo (Unknown)
Hasugian, Paska Marto (Unknown)



Article Info

Publish Date
17 Oct 2025

Abstract

This study aims to develop cross-provincial staple-food segmentation by integrating Principal Component Analysis (PCA) and K-Means to support policy formation. The dataset comprises 2023 staple-food consumption for 34 Indonesian provinces across six indicators from BPS/SUSENAS. All indicators were standardized using z-score, reduced via PCA, and the resulting component scores were used as inputs to K-Means. Three components (PC1–PC3) explained 73.86% of the variance and captured shifts between sweet/animal-based vs. plant foods, fatty or animal-based grains, and the energy contribution of fat. The optimal number of clusters was determined as k = 3, yielding Silhouette = 0.466 and DBI = 0.733, indicating sufficiently compact and well-separated groups. The results reveal three segments: the first group consists of 11 provinces that are predominantly plant-based with low sugar and low animal-based consumption; the second group includes 13 provinces characterized by high animal-based and high-fat consumption; and the third group comprises 10 provinces with low-fat diets and fresh plant-based consumption. Stability checks on initialization and a leave-one-feature-out procedure confirmed consistent assignments. This fills an empirical gap: to our knowledge, no prior research integrates PCA with K-Means for cross-provincial staple-food segmentation in Indonesia while also reporting internal validation. Practically, the study provides operational segmentation to support food-security interventions moving beyond composite indices toward actionable targeting for production support, supply/price stabilization, and improved nutritional access thereby reframing IKP/FSVA from index-ranking to evidence-based segmentation.

Copyrights © 2025






Journal Info

Abbrev

sinkron

Publisher

Subject

Computer Science & IT

Description

Scope of SinkrOns Scientific Discussion 1. Machine Learning 2. Cryptography 3. Steganography 4. Digital Image Processing 5. Networking 6. Security 7. Algorithm and Programming 8. Computer Vision 9. Troubleshooting 10. Internet and E-Commerce 11. Artificial Intelligence 12. Data Mining 13. Artificial ...