This study presents an integrated framework combining machine learning and blockchain technology to enhance the accuracy, transparency, and reliability of forest fire risk prediction in tropical regions. Using geospatial and climatological datasets from Google Earth Engine (GEE), two ensemble algorithms—Random Forest (RF) and Extreme Gradient Boosting (XGBoost)—were trained to model spatial fire susceptibility based on variables such as temperature, humidity, rainfall, wind speed, and vegetation index (NDVI). The RF model effectively identified low-risk areas but was less sensitive to minority high-risk classes, while XGBoost demonstrated superior adaptability in handling class imbalance and achieved more balanced performance across all categories. To ensure data authenticity and traceability, the prediction results were validated and recorded on the Ethereum blockchain using smart contracts. Each prediction output was transformed into a cryptographic hash (SHA-256) to guarantee immutability and verifiability. The integration of machine learning with blockchain establishes a decentralized, tamper-proof, and verifiable prediction system, promoting data integrity and transparency in environmental monitoring. Overall, this research introduces a novel “verifiable prediction pipeline” that advances both artificial intelligence and blockchain applications in environmental informatics, supporting proactive and accountable forest fire mitigation strategies.
Copyrights © 2025