The dynamic and fluctuating nature of stock prices poses a challenge in investment decision-making. This study aims to analyze and predict the stock price of Apple Inc. (AAPL) using the Geometric Brownian Motion (GBM) stochastic model. Historical stock price data for Apple was collected from Yahoo! Finance, including opening price, highest price, lowest price, closing price, and trading volume. The model utilizes mean return and volatility estimates to conduct a Monte Carlo simulation of potential future stock price movements. The simulation results indicate that within the next one year, Apple's stock price is predicted to be approximately $295.15, with possible variations reflecting market volatility. Sensitivity analysis reveals that mean return has a greater impact on stock prices than volatility, emphasizing the importance of a company's fundamentals in long-term investments. Model evaluation using Mean Absolute Percentage Error (MAPE) shows a low error rate, indicating that the predictions generated are fairly accurate. These findings provide insights for investors in understanding stock price behavior and developing more effective investment strategies.
Copyrights © 2025