Infotekmesin
Vol 15 No 2 (2024): Infotekmesin, Juli 2024

Klasifikasi Stunting Balita menggunakan Metode Ensemble Learning dan Random Forest

Finda, Selma Marsya (Unknown)
Danang Wahyu Utomo (Unknown)



Article Info

Publish Date
31 Jul 2024

Abstract

Stunting is a long-term condition that describes nutritional deficiencies that affect children's growth and development from an early age, especially linear growth. Examination of the stunting status of toddlers in Indonesia, especially at the Karanganyar Community Health Center, still uses book calculations so errors are still found in the use of formulas which result in inaccuracies in the classification of stunting. Efforts to improve research results were carried out using the Random Forest algorithm which was enhanced with ensemble methods such as the Bagging and Boosting methods to classify stunting data. The aim of this research is to find out which technique will produce the best and most accurate accuracy. The Ensemble Boosting techniques used are XGBoost and Gradient Boosting. This research uses a dataset from the Karanganyar Health Center, Semarang City with a total of 2000 data records. The test results produced the highest accuracy algorithm, namely the Random Forest + Bagging algorithm which obtained accuracy results of 98.25%. Based on the analysis results obtained, the Bagging and Boosting methods can accurately predict stunting data.

Copyrights © 2024






Journal Info

Abbrev

infotekmesin

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering Mechanical Engineering

Description

INFOTEKMESIN is a peer-reviewed open-access journal with e-ISSN 2685-9858 and p-ISSN: 2087-1627 published by Pusat Penelitian dan Pengabdian Masyarakat (P3M) Politeknik Negeri Cilacap. The journal invites scientists and engineers to exchange and disseminate theoretical and practice-oriented in the ...