Indonesian Journal on Computing (Indo-JC)
Vol. 9 No. 3 (2024): December, 2024

Evaluating Non-Negative Matrix Factorization and Singular Value Decomposition for Skincare Recommendation Systems

Ahmad Indra Nurfauzi (Unknown)
Agung Toto Wibowo (Unknown)



Article Info

Publish Date
26 Dec 2024

Abstract

Facial skincare plays a crucial role in maintaining clean, healthy, and radiant skin. Recommendation systems, such as Collaborative Filtering and Content-Based Filtering, can help users discover suitable skincare products based on their preferences and reviews. This study compares two Matrix Factorization techniques Non-Negative Matrix Factorization (NMF) and Singular Value Decomposition (SVD) to enhance the accuracy and relevance of skincare product recommendations. The results reveal that the SVD model outperforms NMF, achieving a Mean Absolute Error (MAE) of 0.7190, Root Mean Squared Error (RMSE) of 1.0104, Precision of 0.8054, Recall of 0.8144, and an F-1 score of 0.8099. In contrast, the NMF model produced an MAE of 0.7074, RMSE of 1.1052, Precision of 0.7865, Recall of 0.7987, and an F-1 score of 0.7926. These findings demonstrate that both models provide accurate recommendations, with SVD offering more precise and relevant predictions for skincare product recommendations.

Copyrights © 2024






Journal Info

Abbrev

indojc

Publisher

Subject

Computer Science & IT

Description

Indonesian Journal on Computing (Indo-JC) is an open access scientific journal intended to bring together researchers and practitioners dealing with the general field of computing. Indo-JC is published by School of Computing, Telkom University ...