Corn (Zea mays L.) is an important agricultural commodity in Indonesia, serving as the second staple food after rice and playing a crucial role in supporting national food security. However, corn production is frequently threatened by sudden outbreaks of pests and diseases, making accurate early detection essential to maintaining yield stability. This study aims to detect maize leaf diseases using five classification algorithms: Support Vector Machine (SVM), Decision Tree, K-Nearest Neighbors (KNN), Random Forest, and Convolutional Neural Network (CNN). These algorithms were tested using a combination of texture and color features, including Gray Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP), Hue-Saturation-Value (HSV), and L*a*b*. The dataset used consists of 2,048 maize leaf images classified into four categories: Blight, Common Rust, Gray Leaf Spot, and Healthy, with 512 images per class. Each class was divided into training and testing sets to train and evaluate the classification models. The results show that CNN achieved the highest accuracy of 93.93% when using a complete combination of color and texture features. Meanwhile, SVM also demonstrated high performance, achieving the same accuracy (93.93%) using only the combination of color features (HSV and Lab*). Random Forest and Decision Tree performed best when using color features alone, with accuracies of 89.81% and 87.14%, respectively. These findings indicate that color features have a dominant influence on classification accuracy, and that combining color and texture features can significantly enhance model performance, particularly in CNN architectures. This study contributes to the development of early disease detection systems in precision agriculture.
Copyrights © 2025