This study focuses to improve the sentiment analysis of hotel reviews using Multistage mechanism of two-stage approach based on the Bidirectional Long Short-Term Memory (Bi-LSTM) architecture with 53,000 data from 28 hotels in Yogyakarta that captured from google maps review for hotel in Yogyakarta. Hotel customer reviews often contain mixed sentiment expressions, making it crucial to filter out only sentences with a single dominant sentiment to avoid ambiguity. In the first stage, the model detects sentiment at the token level and counts the number of sentiment expressions in each sentence. Only sentences with a single polarity are passed to the final classification stage. In the second stage, the overall sentiment is classified as positive, negative, or neutral using pooled contextual representations. Experimental results from 30 iterations demonstrate consistently high performance, with precision, recall, and F1-scores above 0.95, and overall accuracy exceeding 96%. The confusion matrix analysis shows strong model performance, although some challenges remain in distinguishing between positive and neutral sentiment. Additionally, sentiment trend analysis of hotel reviews from properties such as Lafayette Boutique Hotel and The Westlake Resort Jogja reveals dynamic shifts in guest perception over time. This multistage mechanism approach proves effectiveness of improving sentiment classification accuracy by avoid the bias on sentiment and also in providing valuable temporal insights for monitoring customer satisfaction.
Copyrights © 2025