Proceeding of the Electrical Engineering Computer Science and Informatics
Vol 4: EECSI 2017

Discovering Process Model from Event Logs by Considering Overlapping Rules

Yutika Amelia Effendi (Department of Informatics Faculty of Information Technology, Institut Teknologi Sepuluh Nopember)
Riyanarto Sarno (Department of Informatics Faculty of Information Technology, Institut Teknologi Sepuluh Nopember)



Article Info

Publish Date
01 Nov 2017

Abstract

Process Mining is a technique to automatically discover and analyze business processes from event logs. Discovering concurrent activities often uses process mining since there are many of them contained in business processes. Since researchers and practitioners are giving attention to the process discovery (one of process mining techniques), then the best result of  the  discovered process  models is  a  must. Nowadays, using process  execution  data in the  past, process  models with rules underlying decisions in processes can be enriched, called decision mining. Rules defined over process data specify choices between multiple activities. One out of multiple activities is allowed to be executed in existing decision mining methods or it is known as mutually-exclusive rules. Not only mutually-exclusive rules, but also fully deterministic because all factors which influence decisions are recorded. However, because of non-determinism or incomplete   information,   there   are   some   cases   that   are overlapping  in  process  model.  Moreover,  the  rules  which are generated  from  existing  method  are  not  suitable  with  the recorded data. In this paper, a discovery technique for process model with data by considering the overlapping rules from event logs is presented. Discovering overlapping rules uses decision tree learning techniques, which fit the recorded data better than the existing method. Process model discovery from event logs is generated using Modified Time-Based Heuristics Miner Algorithm. Last, online book store management process model is presented in High-level BPMN Process Model.

Copyrights © 2017






Journal Info

Abbrev

EECSI

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

Proceeding of the Electrical Engineering Computer Science and Informatics publishes papers of the "International Conference on Electrical Engineering Computer Science and Informatics (EECSI)" Series in high technical standard. The Proceeding is aimed to bring researchers, academicians, scientists, ...