IJoICT (International Journal on Information and Communication Technology)
Vol. 9 No. 2 (2023): Vol.9 No. 2 Dec 2023

Socio-user Context Aware-Based Recommender System: Context Suggestions for A Better Tourism Recommendation

Kusuma Adi Achmad (Unknown)
Lukito Edi Nugroho (Unknown)
Achmad Djunaedi (Unknown)
Widyawan (Unknown)



Article Info

Publish Date
25 Dec 2023

Abstract

The existing tourism recommender system model is mostly predictive analytics for destination recommendations (item recommendation). Limited research has been conducted in the discussion of a recommender system model, particularly context suggestion. Thus, it is necessary to develop a recommender system model not only to predict tourism destinations but also to suggest contexts appropriate for tourist preferences (context suggestions). A deep learning method was used to create a model of the socio-user context aware-based recommender system for context suggestions. The attribute used as a label to suggest context was uHijos, uCuisine, uAmbience, and uTransport. The accuracy of the socio-user context aware-based recommender system in suggesting the context of uHijos, uAmbience, and uTransport was 100% with an error rate of 0%. It was found that only the level of recognition of the model in suggesting uCuisine was less accurate (below 30%) with a classification error for more than 70%. Performance evaluation of the socio-user model context-based recommender system was considered efficient, particularly for the evaluation of the level of accuracy, completeness (recall/sensitivity), precision, and a harmonic average of precision and recall (F-score), mainly for label/context of uHijos, uAmbience, and uTransport.

Copyrights © 2023






Journal Info

Abbrev

ijoict

Publisher

Subject

Computer Science & IT

Description

International Journal on Information and Communication Technology (IJoICT) is a peer-reviewed journal in the field of computing that published twice a year; scheduled in December and ...