JURIKOM (Jurnal Riset Komputer)
Vol. 12 No. 2 (2025): April 2025

Deteksi Kualitas Buah Sawo dengan Pendekatan Ekstraksi Fitur GLCM dan Algoritma Support Vector Machine

Fidiya, Karisma Risma (Unknown)
Vikri, Muhammad Jauhar (Unknown)
Kartini, Alif Yuanita (Unknown)



Article Info

Publish Date
30 Apr 2025

Abstract

The quality of sapodilla fruit is a crucial factor in ensuring product standards and consumer satisfaction. This study aims to detect the quality of sapodilla fruit using the Gray Level Co-occurrence Matrix (GLCM) method for texture feature extraction and Support Vector Machine (SVM) as the classification algorithm. A dataset of sapodilla fruit images was collected and processed using data augmentation techniques to enhance image variation. Extracted features, including contrast, homogeneity, energy, and correlation, were used as input for the SVM model. The model was developed using a train-test split approach and evaluated based on accuracy, precision, recall, and F1-score. Experimental results show that the proposed method successfully classifies sapodilla fruit into three categories—raw, ripe, and damaged—with an accuracy of 85%. This model was implemented in a MATLAB-based Graphical User Interface (GUI), enabling users to automatically classify sapodilla quality easily and efficiently.

Copyrights © 2025






Journal Info

Abbrev

jurikom

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering

Description

JURIKOM (Jurnal Riset Komputer) membahas ilmu dibidang Informatika, Sistem Informasi, Manajemen Informatika, DSS, AI, ES, Jaringan, sebagai wadah dalam menuangkan hasil penelitian baik secara konseptual maupun teknis yang berkaitan dengan Teknologi Informatika dan Komputer. Topik utama yang ...