Counter-Strike 2 (CS2) is a game that has received a lot of enthusiasm from the gaming community since its release. User reviews on the Steam platform are the main source for understanding community sentiment towards this game. This study aims to analyze sentiment towards CS2 reviews using the Support Vector Machine (SVM) method. Data was collected through the Apify platform, then cleaned through processes such as tokenization, stopword removal, and lemmatization. Text features were converted into numerical values using Term Frequency-Inverse Document Frequency (TF-IDF) to be used in the SVM model. The SVM model was used to classify review sentiment into three categories: positive, neutral, and negative. Evaluation was conducted by measuring accuracy, confusion matrix, and classification reports. In the evaluation results, the SVM model using the One-vs-Rest (OVR) approach showed that the model without SMOTE produced an accuracy of 81.95%. After applying the Synthetic Minority Over-sampling (SMOTE) technique to the training data to balance the distribution between classes, the model accuracy increased slightly to 82.18%. This study provides valuable insights for game developers in understanding players' opinions about CS2. Additionally, this study demonstrates the potential of SVM in text-based sentiment analysis on user review platforms.
Copyrights © 2025