JURIKOM (Jurnal Riset Komputer)
Vol. 12 No. 4 (2025): Agustus 2025

Optimalisasi Metode RBFNN Dengan Fuzzy C-Means Dalam Prediksi Import Barang Konsumsi Indonesia

Budiastawa, I Dewa Gede (Unknown)
Sunarya, I Made Gede (Unknown)
Wirawan, I Made Agus (Unknown)



Article Info

Publish Date
14 Aug 2025

Abstract

Prediction or forecasting is an action that aims to find out future events based on indicators that influence an event. Consumer goods are products or goods purchased by people or households that are intended for direct consumption in the sense that they are not for further production purposes. Based on this, serious handling is needed to maintain the state of the Indonesian economy, especially in the industrial sector. Predicting the value of consumer goods imports is a step in finding out the value of consumer goods imports in the next period so that the government has a reference in determining policies. In this study, the prediction of the value of consumer goods imports was carried out based on factors that influence the value of consumer goods imports based on research in the field of economics. This study uses the Radial Basis Function Neural Network (RBFNN) method using a combination of clustering methods, namely Fuzzy C-Means Clustering to improve method performance. The RBFNN method is the best method used in predicting future data based on previous research and the FCM method is a clustering method that is able to overcome ambiguity in the prediction process. This study proves that the Fuzzy C-Means method is effective in optimizing the performance of the Radial Basis Function Neural Network method with a comparison of MAPE values in each combination, namely RBFNN - FCM 15.73%, RBFNN - K-Means 16.87% and RBFNN - Random centroid 17.70%. The learning rate parameter is directly proportional to the RBFNN - FCM model where the greater the learning rate, the better the model performance, indicating that the model does not need to do in-depth learning to recognize data patterns. In contrast to the fuzzification parameter which increases accuracy when the fuzzification value is lowered, indicating that the model does not require a very vague approach to recognize data patterns. The best architecture is 8 - 4 - 1 with a fuzzification parameter value of 1.5, a learning rate of 0.3 and a threshold error of 0.3 produced by a combination of RBFNN and FCM.

Copyrights © 2025






Journal Info

Abbrev

jurikom

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering

Description

JURIKOM (Jurnal Riset Komputer) membahas ilmu dibidang Informatika, Sistem Informasi, Manajemen Informatika, DSS, AI, ES, Jaringan, sebagai wadah dalam menuangkan hasil penelitian baik secara konseptual maupun teknis yang berkaitan dengan Teknologi Informatika dan Komputer. Topik utama yang ...