JURIKOM (Jurnal Riset Komputer)
Vol. 12 No. 4 (2025): Agustus 2025

Sistem Rekomendasi Film Menggunakan Data User-End dan Knowledge Graph Convolutional Network pada Dataset MovieLens 1 M

Yanuar, Muhammad Rizki (Unknown)
Umbara, Fajri Rakhmat (Unknown)
-, Agus Komarudin (Unknown)



Article Info

Publish Date
30 Aug 2025

Abstract

Traditional recommendation systems such as Collaborative Filtering and Content-Based Filtering often fail to provide relevant recommendations due to their limitations in handling sparsity and cold-start problems. This study proposes a Knowledge Graph Convolutional Network (KGCN) model enriched with user demographic data from the MovieLens 1M dataset to address these issues. The primary focus of the research is to demonstrate that the Importance Sampling technique is significantly superior to Uniform Sampling in effectively training the model. After hyperparameter tuning, the optimal model configuration achieved peak performance with an AUC score of 0.8798 and NDCG@10 of 0.9719. These results demonstrate that the proposed approach is effective in building an accurate, personalised recommendation system capable of addressing sparsity and cold-start issues.

Copyrights © 2025






Journal Info

Abbrev

jurikom

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering

Description

JURIKOM (Jurnal Riset Komputer) membahas ilmu dibidang Informatika, Sistem Informasi, Manajemen Informatika, DSS, AI, ES, Jaringan, sebagai wadah dalam menuangkan hasil penelitian baik secara konseptual maupun teknis yang berkaitan dengan Teknologi Informatika dan Komputer. Topik utama yang ...