IAES International Journal of Robotics and Automation (IJRA)
Vol 14, No 2: June 2025

Comparative insights into nonlinear PID-based controller design approaches for industrial applications

Syed Salim, Syed Najib (Unknown)
Rahmat, Mohd Fua’ad (Unknown)
Abdullah, Lokman (Unknown)
Shamsudin, Shamsul Anuar (Unknown)
Kamaludin, Khairun Najmi (Unknown)
Ibrahim, Mazree (Unknown)



Article Info

Publish Date
01 Jun 2025

Abstract

Proportional-integral-derivative (PID) controllers are established in manufacturing due to their simple design, robustness, and wide-ranging industrial applications. However, traditional PID controllers often struggle with the complexity and nonlinearity behaviors inherent in many control systems. As a result, ongoing and future research is focused on developing more stable PID controllers that function efficiently without heavily depending on exact mathematical models, by fine-tuning controller parameters. This study explores several PID-based controllers, including non-linear PID (N-PID), multi-rate non-linear PID (MN-PID), and self-regulating nonlinear PID (SN-PID), assessing and contrasting their performance. The efficacy and robustness of these control mechanisms are substantiated through comparative analyses with the sliding mode control technique, employing experimental data from a pneumatic actuator system to assess performance across varying load scenarios. SN-PID outperforms sliding mode controller (SMC) by 90.97% and PID by 89.90%, followed by MN-PID (85.58% over SMC, 83.86% over PID) and N-PID (78.08% over SMC, 75.49% over PID), while PID offers only 10.63% improvement over SMC. These findings provide valuable insights and recommendations for enhancing controller performance. These insights aim to guide control engineers in selecting the most appropriate N-PID design strategy for specific applications, ultimately improving system performance and operational efficiency in industrial environments.

Copyrights © 2025






Journal Info

Abbrev

IJRA

Publisher

Subject

Automotive Engineering Electrical & Electronics Engineering

Description

Robots are becoming part of people's everyday social lives and will increasingly become so. In future years, robots may become caretaker assistants for the elderly, or academic tutors for our children, or medical assistants, day care assistants, or psychological counselors. Robots may become our ...