Infants and toddlers are in a critical period of rapid growth and development, often referred to as the "golden age." During this stage, regular nutritional assessments are essential to monitor health status and detect potential nutritional problems early. This study aims to classify the nutritional status of infants and toddlers using the Naïve Bayes algorithm, a probabilistic classification method based on Bayes' theorem with a strong assumption of attribute independence. The main attributes used in the classification system include age, weight, and height. The dataset consists of 700 records of infants and toddlers collected from previous observations. The results show that the Naïve Bayes algorithm can be effectively implemented for nutritional status classification, achieving a system accuracy of 88.14%. This indicates that the method performs well and has the potential to be utilized in decision support systems for child health monitoring.
Copyrights © 2025