Dengue Hemorrhagic Fever (DHF) and Typhus/Typhoid are two infectious diseases often found in tropical areas. In Indonesia, data shows that cases of DHF and typhoid are quite high, so a system is needed that can help doctors make faster and more accurate decisions based on blood test results. Based on the previous explanation, this study aims to apply the Deep Learning Multilayer Perceptron (MLP) method to be able to identify dengue fever and typhus. This study uses a Deep Learning-based Multilayer Perceptron approach for accurate classification of Dengue Fever, Typhoid Fever, and Normal cases using clinical blood parameters and selected symptoms. This methodology consists of several stages: dataset acquisition, preprocessing, model architecture design, training, and evaluation. The dataset was taken from Dumai City Hospital medical record data from 2023 to 2024, totaling 379 patient data used to identify Dengue Fever and Typhus using 7 clinical parameters as the main input obtained from laboratory examination results and patient clinical symptoms: Hemoglobin, Leukocyte, Platelet count, Hematocrit level, Headache, Abdominal pain, and diarrhea. Based on the results obtained, the application showed the best performance in classifying Dengue Fever, which is shown through the achievement of the model evaluation metrics as follows. The test results indicate that an increase in the amount of test data is directly proportional to the percentage of classification success achieved by the system. Based on the test results with 10% validation data, 70 % training data, and 20 % test data, the system showed very good performance with an overall accuracy of: 98.68% (Accuracy = 0.9868), which indicates a high level of success in classifying for the three classes, namely Normal, Dengue Fever, and Typhus.
Copyrights © 2025