Bulletin of Computer Science Research
Vol. 5 No. 5 (2025): August 2025

Analisis Metode Forward Chaining dan Certainty Factor untuk Diagnosa Penyakit pada Ibu Hamil

Yasmin, Nabilla (Unknown)
Yuhandri, Yuhandri (Unknown)
Nurcahyo, Gunadi Widi (Unknown)



Article Info

Publish Date
29 Aug 2025

Abstract

The high number of complications that occur during pregnancy and childbirth has the potential to significantly increase the risk of morbidity and mortality in pregnant women. The Maternal Mortality Rate (MMR) reflects the condition of pregnant, delivering, and postpartum mothers, which remains relatively high and is a major concern in the health sector. Based on this, this study aims to develop and evaluate an Expert System based on the Forward Chaining and Certainty Factor methods to diagnose diseases in pregnant women at an early stage, thereby providing fast and accurate medical decision support and minimizing the risk of complications during pregnancy. The Forward Chaining and Certainty Factor methods were chosen for their ability to handle rule-based inference processes and provide certainty level calculations in the diagnosis results. Forward Chaining is used to find solutions based on the symptoms entered by users, while the Certainty Factor helps assign confidence weights to the generated diagnosis. The dataset in this study consists of 30 data samples with 30 types of symptoms experienced by patients as variables. The results show that the Forward Chaining and Certainty Factor methods are capable of producing disease diagnoses in pregnant women with an accuracy rate of 95%. The contribution of this research is to improve the quality of maternal health services through fast and accurate diagnoses by medical personnel and to assist pregnant women in obtaining an initial diagnosis of common diseases during pregnancy.

Copyrights © 2025






Journal Info

Abbrev

bulletincsr

Publisher

Subject

Computer Science & IT

Description

Bulletin of Computer Science Research covers the whole spectrum of Computer Science, which includes, but is not limited to : • Artificial Immune Systems, Ant Colonies, and Swarm Intelligence • Bayesian Networks and Probabilistic Reasoning • Biologically Inspired Intelligence • Brain-Computer ...