Bulletin of Computer Science Research
Vol. 5 No. 6 (2025): October 2025

Implementasi Metode Cosine Similarity Dalam Sistem Profiling Dosen Berbasis Data Bibliometrik Untuk Pemetaan Kompetensi Akademik

Jefry Sunupurwa Asri (Unknown)
Firnanda Amalia (Unknown)
Muhammad Thifaal Dzaki (Unknown)
Muhammad Fikri (Unknown)
Ardra Rianisa (Unknown)



Article Info

Publish Date
31 Oct 2025

Abstract

Lecturer profiling based on scientific publications is a strategic component in managing human resources in higher education institutions. The manual process of identifying lecturer competencies often requires considerable time and may lead to inaccuracies. This study aims to develop an automated application for lecturer profiling and competency mapping to relevant courses using an unsupervised text similarity approach based on the Term Frequency–Inverse Document Frequency (TF-IDF) and Cosine Similarity methods. The application was developed using the Streamlit framework with integrated data from Google Scholar, SINTA, and Scopus. The evaluation involved 50 lecturers and 120 lecturer–course pairs, measured using accuracy, precision, recall, F1-score, response time, and usability metrics. The results show an accuracy of 85.3%, an F1-score of 0.853, an average response time of 2.3 seconds, and a usability score of 86.4, which falls into the excellent category. The system is capable of displaying interactive lecturer profiles, performing competency mapping to relevant courses, and generating automatic reports in PDF format. Therefore, this application effectively supports data-driven academic decision-making processes for assigning lecturers according to their areas of expertise.

Copyrights © 2025






Journal Info

Abbrev

bulletincsr

Publisher

Subject

Computer Science & IT

Description

Bulletin of Computer Science Research covers the whole spectrum of Computer Science, which includes, but is not limited to : • Artificial Immune Systems, Ant Colonies, and Swarm Intelligence • Bayesian Networks and Probabilistic Reasoning • Biologically Inspired Intelligence • Brain-Computer ...