Jurnal Informatika dan Teknik Elektro Terapan
Vol. 11 No. 3 (2023)

PREDIKSI KELULUSAN SISWA SEKOLAH MENENGAH PERTAMA MENGGUNAKAN MACHINE LEARNING

Naibaho, Agusti Frananda Alfonsus (Unknown)
Zahra, Amalia (Unknown)



Article Info

Publish Date
17 Jul 2023

Abstract

In recent years, there has been a number of students who graduated late at Lubuk Alung 1st State Junior Highschool. This statement is supported by graduation data from Lubuk Alung 1st Satet Junior Highschool. Therefore, it is necessary to predict students’ graduation status to identify which factors influence the student’s graduation, which will also consequently help the school to solve problem more easily. To solve this problem, the researchers predict student graduation based on student graduation information. The attributes used are personal data related to students, student academic data, and data related to the work of the student’s parents. This research retrieved data on student graduation from schools that have been recapitulated. The classification algorithms used to predict students’ graduation are decision tree, random forest, and extreme gradient boosting with grid searchCV and k-fold=5. The prediction accuracy using the random forest algorithm outperforms the others with a value of 99.5%.

Copyrights © 2023






Journal Info

Abbrev

jitet

Publisher

Subject

Computer Science & IT

Description

Jurnal Informatika dan Teknik Elektro Terapan (JITET) merupakan jurnal nasional yang dikelola oleh Jurusan Teknik Elektro Fakultas Teknik (FT), Universitas Lampung (Unila), sejak tahun 2013. JITET memuat artikel hasil-hasil penelitian di bidang Informatika dan Teknik Elektro. JITET berkomitmen untuk ...