Jurnal Informatika dan Teknik Elektro Terapan
Vol. 11 No. 3s1 (2023)

UNVEILING CHURN PREDICTION AT BANK IVORY

Oetama, Raymond Sunardi (Unknown)



Article Info

Publish Date
12 Sep 2023

Abstract

The banking industry faces significant challenges in tackling customer churn within its credit card services. Customer churn refers to the situation where customers discontinue using a bank's services and migrate to another financial institution. To proactively address this critical issue, the present research endeavors to predict customer attrition in credit card services. To achieve this goal, the study extensively employs the CRISP-DM framework and diligently compares the performance of two predictive models, namely Gradient Boosting and Random Forest. The research endeavors to identify potential churn customers by analyzing crucial variables, including customer age, marital status, gender, income category, credit limit, and total transactions. The preferred modeling approach, determined based on the lowest misclassification rate, serves as a vital component of the research's analytical process. Remarkably, the research findings unequivocally demonstrate the superior performance of the Gradient Boosting model, which attains a misclassification rate of 0.1118 in predicting customer attrition. 

Copyrights © 2023






Journal Info

Abbrev

jitet

Publisher

Subject

Computer Science & IT

Description

Jurnal Informatika dan Teknik Elektro Terapan (JITET) merupakan jurnal nasional yang dikelola oleh Jurusan Teknik Elektro Fakultas Teknik (FT), Universitas Lampung (Unila), sejak tahun 2013. JITET memuat artikel hasil-hasil penelitian di bidang Informatika dan Teknik Elektro. JITET berkomitmen untuk ...