Jurnal Informatika dan Teknik Elektro Terapan
Vol. 12 No. 3 (2024)

SISTEM DETEKSI PENYAKIT PADA OTAK DENGAN PENDEKATAN KLASIFIKASI CNN DAN PREPROCESSING IMAGE GENERATOR

Kurniawan, Muchamad (Unknown)
Abdullah, Ryan Gading (Unknown)



Article Info

Publish Date
03 Aug 2024

Abstract

In today's digital era, artificial intelligence technology has become an important part of various human activities, including in the healthcare sector. One of its focal points is the detection of brain diseases, which have significant implications for health and medical expenses. This study addresses the issue of accuracy in brain disease detection through the utilization of Convolutional Neural Network (CNN) methodology and preprocessing Image Generator. Previous research suggests that CNN with preprocessing Image Generator has the potential to enhance detection accuracy. The research employs the Computed Tomography (CT) of the Brain dataset from Kaggle, comprising 259 data points categorized into three classes: aneurysm, tumor, and cancer. Experimental findings indicate that the CNN method with preprocessing Image Generator yields higher accuracy in both training and testing phases, with reduced complexity. In conclusion, this method holds promise for more effective detection of brain diseases

Copyrights © 2024






Journal Info

Abbrev

jitet

Publisher

Subject

Computer Science & IT

Description

Jurnal Informatika dan Teknik Elektro Terapan (JITET) merupakan jurnal nasional yang dikelola oleh Jurusan Teknik Elektro Fakultas Teknik (FT), Universitas Lampung (Unila), sejak tahun 2013. JITET memuat artikel hasil-hasil penelitian di bidang Informatika dan Teknik Elektro. JITET berkomitmen untuk ...