Jurnal Informatika dan Teknik Elektro Terapan
Vol. 12 No. 3S1 (2024)

PREDIKSI PENYAKIT JANTUNG MENGGUNAKAN METODE RANDOM FOREST DAN PENERAPAN PRINCIPAL COMPONENT ANALYSIS (PCA)

Alfajr, Nur Halizah (Unknown)
Defiyanti, Sofi (Unknown)



Article Info

Publish Date
12 Oct 2024

Abstract

Heart disease is a significant public health issue and the leading cause of death worldwide. Risk factors such as hypertension, diabetes, obesity, sedentary lifestyle, smoking, and genetic factors contribute to the development of heart disease. This study aims to develop a heart disease prediction model using the Random Forest method. The dataset used comes from the UCI Machine Learning Repository, containing data from 1026 patients with various health features. The methods used include the stages of knowledge discovery in databases (KDD), namely data selection, preprocessing, transformation, data mining, and evaluation. The study results show that the model with 100 decision trees achieved an accuracy of 0.9823. Further evaluation using the confusion matrix and classification report indicates that the Random Forest method provides 98% accuracy, 100% precision, 96% recall, and a 98% F1-score. In conclusion, the Random Forest method is effective in predicting heart disease, with features such as thal having a significant impact on model accuracy.

Copyrights © 2024






Journal Info

Abbrev

jitet

Publisher

Subject

Computer Science & IT

Description

Jurnal Informatika dan Teknik Elektro Terapan (JITET) merupakan jurnal nasional yang dikelola oleh Jurusan Teknik Elektro Fakultas Teknik (FT), Universitas Lampung (Unila), sejak tahun 2013. JITET memuat artikel hasil-hasil penelitian di bidang Informatika dan Teknik Elektro. JITET berkomitmen untuk ...