Pengolahan citra, terutama teknik peningkatan kontras seperti Contrast Limited Adaptive Histogram Equalization (CLAHE), berperan krusial dalam meningkatkan kinerja model Generative Adversarial Networks (GANs). Penelitian ini mengevaluasi dampak CLAHE pada akurasi klasifikasi gambar menggunakan GANs. Hasil penelitian menunjukkan bahwa penerapan CLAHE berhasil meningkatkan akurasi klasifikasi sebesar 20% dibandingkan dengan model yang tidak menggunakan CLAHE, mencapai akurasi sebesar 76,20%. Temuan ini mengindikasikan bahwa CLAHE efektif dalam meningkatkan kualitas data gambar, sehingga model GAN dapat belajar fitur-fitur yang lebih relevan dan menghasilkan output yang lebih akurat.
Copyrights © 2024