Penyakit jantung termasuk serangan jantung merupakan salah satu penyakit yang menjadi perhatian serius dalam dunia medis. Deteksi dini risiko penyakit jantung sangat penting untuk mencegah dampak yang lebih serius. Penelitian ini menggunakan dataset yang terdiri dari 303 data dengan tipe numerik dan nominal. Data tersebut diolah menggunakan algoritma C4.5 untuk melakukan klasifikasi risiko penyakit serangan jantung. Hasil penelitian menunjukkan bahwa algoritma tersebut mencapai tingkat akurasi sebesar 83,98%. Lebih lanjut, melalui decision tree mengidentifikasi bahwa faktor terbesar yang diketahui berkontribusi dalam penentuan risiko penyakit serangan jantung adalah faktor Cp (Chest Pain), Caa (n Major Vessels), Oldpeak, Sex, dan Exng (Exercise Angina). Temuan penelitian ini diharapkan dapat memberikan tambahan wawasan dalam upaya deteksi dini dan penanganan penyakit jantung di masa mendatang di mana model klasifikasi ini dapat digunakan sebagai alat skrining awal untuk mengidentifikasi individu yang berisiko tinggi terkena serangan jantung.
Copyrights © 2024