Journal of Applied Materials and Technology
Vol. 7 No. 1 (2025): September 2025

From waste to value: Lapachol from teak wood waste as a green catalyst for sustainable soda cooking of Acacia and Eucalyptus

Sari, Esty Octiana (Unknown)
Utami, Syelvia Putri (Unknown)
-, Evelyn (Unknown)
Nakagawa-Izumi, Akiko (Unknown)
Ohi, Hiroshi (Unknown)



Article Info

Publish Date
29 Oct 2025

Abstract

The development of a sustainable catalyst as an alternative to synthetic anthraquinone (AQ) is urgently needed for a more efficient pulping process. This study investigates the potency of lapachol, a natural naphthoquinone isolated from teak (Tectona grandis) wood waste, as a catalyst in soda cooking of three industrially important hardwoods: Acacia crassicarpa, Eucalyptus pellita, and Eucalyptus globulus. Approximately 97.7% purity of lapachol was isolated and applied at 0.09% (on oven-dry wood). For comparison, the commercial synthetic additive, 2-Methylanthraquinone (2-MAQ) was also used at the same dosage.  Cooking experiments were conducted at 160°C under varying alkali dosages (23, 27, 31%) and times (4, 5, 6 h). The result revealed that the delignification performance was species-dependent: A. crassicarpa (S/V=0.74) was the hardest, while E. globulus (S/V=3.04) was the easiest to delignify. Notably, E. pellita (S/V=2.04) shows the greatest selectivity index. Lapachol shows the capability of enhancing delignification across the three wood species by decreasing the residual lignin by up to 5% in A. crassicarpa, 5% in E. Pellita, and 2% in E. globulus compared with soda cooking (control). Although the delignification is slightly lower than 2-MAQ, lapachol maintains pulp yields comparable to or higher than 2-MAQ. The selectivity index analysis confirmed that lapachol improved the balance between lignin removal and carbohydrate preservation, with the benefits most pronounced in E. globulus. These findings underscore lapachol as a promising sustainable pulping catalyst, offering the potential for impactful industry transformation through sustainable innovation.

Copyrights © 2025






Journal Info

Abbrev

jamt

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Civil Engineering, Building, Construction & Architecture Engineering Mechanical Engineering

Description

Journal of Applied Materials and Technology (JAMT) is aimed at capturing current development and initiatives in applied materials and technology. JAMT showcases innovative applied materials and technology, providing an opportunity for science, transfer and collaboration of technology. JAMT focuses ...