Enthusiastic : International Journal of Applied Statistics and Data Science
Volume 4 Issue 1, April 2024

Characterization of Student’s Performance in Massive Open Online Courses (MOOC)

Ching Joe, Tan (Unknown)



Article Info

Publish Date
28 Apr 2024

Abstract

Massive Open Online Courses (MOOC) allow students to learn online at any time and from any location. Unfortunately, poor completion rates and a large student group make it difficult for teachers to keep track of their student’s progress. Due to a lack of adequate counselling, students who perform poorly are more likely to give up. The goal of this study was to predict student’s certification by analyzing data on student’s learning behavior. The initial data on learning behavior was obtained from edX, a well-known MOOC platform. Based on this data, three statistical models such as logistic regression, graph convolutional network, and cluster analysis were utilized to predict student’s performance. The proposed model’s usefulness was demonstrated by using a testing set of data from the actual courses. Our findings showed that tracking student activity in terms of number of unique days active, watching videos, participating in forum discussions, and exploring more courseware content might help predict student’s performance in MOOC and enhance completion rates.

Copyrights © 2024






Journal Info

Abbrev

ENTHUSIASTIC

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Economics, Econometrics & Finance Engineering Mathematics

Description

ENTHUSIASTIC is an international journal published by the Statistics Department, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia. ENTHUSIASTIC publishes original research articles or review articles on all aspects of the statistics and data science field which should be ...