Telematika : Jurnal Informatika dan Teknologi Informasi
Vol 20 No 2 (2023): Edisi Juni 2023

The Implementation of Color Feature Extraction and Gray Level Co-occurrence Matrix Combination in K-Nearest Neighbor Classification Method for Tomato Leaf Disease Identification

Agusta, Sandy Wahyu (Unknown)
Kaswidjanti, Wilis (Unknown)



Article Info

Publish Date
30 Jun 2023

Abstract

Purpose: Tomato plants are quite important commodities in Indonesia. With a complete and good content of substances, tomatoes become a product that is widely consumed by the public. However, much of the decline in crop production is caused by plant disruptive organisms such as viruses and bacteria. Early identification of plant diseases is expected to prevent the spread of diseases caused by these organisms.Design/methodology/approach: In this study the data used in machine training are data from kaggle sites. This study uses the K-Nearest Neighbor classification method with a combination method of extracting feature on RGB, HSV and GLCM images to obtain the best accuracy value.Findings/Results: Based on the test results among the combination methods of feature extraction in the process of identifying tomato leaf diseases which are classified into 7, namely testing units of RGB, HSV, GLCM followed by a combination of RGB HSV, RGB GLCM, HSV GLCM, and RGB HSV GLCM methods obtained a comparison value of 71.5%, 72.9%, 79%, 82.5%, 90.6%, 87.4% and 87.7%. Based on these data, it was concluded that with the combination of the RGB GLCM method obtained the best accuracy value in the identification of tomato leaf disease with an accuracy rate of 90.6%.Originality/value/state of the art: The use of the K-Nearest Neighbor classification method in this study combines the collection of selected characteristics so as to get a comparison of 7 combination groups between RGB, HSV, and GLCM.

Copyrights © 2023