Tanaman padi sangat penting untuk menjaga ketersediaan pangan di Indonesia. Namun, produksinya sering menurun karena berbagai masalah, salah satunya yaitu penyakit daun yang sulit dikenali sejak awal. Jika penyakit tidak cepat dikenali dan ditangani, hal ini bisa menyebabkan hasil panen menurun drastis dan mengganggu pasokan beras di dalam negeri. Oleh karena itu, penelitian ini bertujuan untuk pengembangan sistem identifikasi penyakit daun padi otomatis. Sistem ini memanfaatkan citra digital dan jaringan saraf tiruan Convolutional Neural Network (CNN) dengan arsitektur ResNet50V2 untuk mengenali delapan jenis penyakit: Bacterial Leaf Blight, Brown Spot, Leaf Blast, Leaf Scald, Narrow Brown Spot, Rice Hispa, Sheath Blight, dan Tungro. Data citra diperoleh dari platform Kaggle, dengan total 15.241 gambar yang telah melalui tahapan preprocessing seperti normalisasi piksel, augmentasi, dan pengubahan ukuran menjadi 224x224 piksel. Model CNN dilatih menggunakan pendekatan transfer learning selama 50 epoch dengan bantuan dua fitur callback untuk menjaga kualitas pelatihan. Evaluasi performa dilakukan melalui confusion matrix dan classification report. Berdasarkan hasil pengujian, model menunjukkan akurasi tertinggi sebesar 94,14% pada data uji, serta nilai precision, recall, dan f1-score yang tinggi di hampir seluruh kelas. Dari hasil ini membuktikan bahwa CNN berbasis ResNet50V2 efektif digunakan untuk mendeteksi penyakit daun padi secara otomatis, dan berpotensi diterapkan sebagai alat bantu bagi petani dalam mempercepat proses identifikasi dan pengambilan keputusan di bidang pertanian.
Copyrights © 2025