J-Com (Journal of Computer)
Vol. 5 No. 1 (2025): MARET 2025

ANALISIS SENTIMEN ULASAN E-COMMERCE SHOPEE DENGAN MENGGUNAKAN ALGORITMA NAIVE BAYES

angreyani, jeny (Unknown)
Pernando, Yonky (Unknown)



Article Info

Publish Date
07 Mar 2025

Abstract

Abstract: In this study, an analysis of the use of the Naive Bayes algorithm for sentiment analysis of reviews from Shopee app users on the Google Play Store was conducted, with classification divided into three categories: positive, negative, and neutral. To improve data quality, a preprocessing process was carried out with stages of cleaning, case folding, normalization, stop word removal, stemming, and tokenizing. Next, the text is formatted using the TF-IDF method to facilitate classification. For this data, the Naive Bayes model is used, which has an accuracy rate of 87% in detecting sentiment. Positive and negative categories can be easily identified compared to neutral sentiments due to the smaller amount of neutral data. Overall, the Naive Bayes algorithm successfully analyzed user sentiments well. The research can be developed with other algorithm methods, such as SVM, K-NN, or Decision Tree, in order to compare the performance of various algorithms.Keywords: sentiment analysis; naive bayes; user reviews; e-commerce; shopee Abstrak: Dalam penelitian ini dilakukan analisis penggunaan algoritma Naive Bayes untuk analisis sentimen review dari pengguna aplikasi Shopee di Google Play Store, klasifikasi dibagai menjadi 3 kategori yaitu positif, negatif, dan netral. Untuk meningkatkan kualitas data, dilakukam proses preprocessing dengan tahap cleanimg, case folding, normalisasi, stopword removal, stemming, dan tekonezing. Selanjutnya, teks diformat menggunakan metode TF-IDF untuk memudahkan klasifikasi. Untuk data ini, model Naive Bayes digunakan, yang memiliki tingkat akurasi 87% dalam mendeteksi sentimen. Kategori positif dan negatif dapat dengan mudah diidentifikasi dibadingkan sentiemen netral karena jumlah data netral yang lebih sedikit. Secara keseluruhan, algoritma Naive Bayes berhasil menganalisis perasaan pengguna dengan baik. Penelitian dapat dikembangkan dengan algoritma metode lain, seperti SVM, K-NN, atau Decision Tree, guna membandingkan kinerja berbagai algoritma.Kata kunci: analisis sentiment; naive bayes; ulasan pengguna; e-commerce; shopee

Copyrights © 2025






Journal Info

Abbrev

j-com

Publisher

Subject

Computer Science & IT

Description

J-Com (Journal of Computer) is a scientific journals that contains research results conducted by collaborating students with lecturers. J-Com published third a year on March, July, ...